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Dramatis Personae, 1950-1951

Harold Kuhn, 1925 – , born in California
• Ph.D. in Mathematics, Princeton University, 1950
• Lecturer in Mathematics, Princeton University, 1950-1952
• Professor of Mathematics, Princeton University, 1959-1995

Albert Tucker, 1905 – 1995, born in Ontario, Canada
• Ph.D. in Mathematics, Princeton University, 1932
• Professor of Mathematics, Princeton University, 1946-1974
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Importance of the Kuhn-Tucker Theorem
• Although the origins of constrained optimization are 

complex, extending back to the formulation of Lagrange, 
Kuhn and Tucker (1951) “Nonlinear Programming,”
decisively introduced this technique to economics, as well 
as operations research and fields of engineering, following 
WW II when the time was ripe for such methods; 

• Kjeldsen (2000) authored a fascinating historical account 
in Historia Mathematica;

• Takayama (1985) wrote in the Introduction to his text, 
Mathematical Economics: “nonlinear programming   
theory … is probably the most important mathematical 
technique in modern economic theory.”
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Dramatis Personae, 1951-1954
Martin Beckmann, 1924 – , born in Germany
• Doctorate, Economics, University of Freiburg, Germany, 1950
• Research Associate, Cowles Commission, 1951-1954

C. Bartlett McGuire, 1925 – 2006, born in Minnesota
• A. M., Economics, University of Chicago, 1952
• Research Associate, Cowles Commission, 1952-1954

Christopher B. Winsten, 1923 – 2005, born in England
• B. A., University of Cambridge, UK 
• Research Associate, Cowles Commission, 1952-1954

Tjalling C. Koopmans, 1910 – 1985, born in Netherlands
• Doctorate, Economics, University of Leiden, Netherlands, 1936
• Research Director, Cowles Commission for Research in     

Economics, and Professor, University of Chicago, 1948-1954
• Later, Co-Recipient Nobel Prize in Economic Sciences in 1975 
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A Study of the Allocation of Resources
• During 1940-54, the Cowles Commission for Research in 

Economics was the leading academic research center in 
mathematical economics and applications of mathematical 
programming to a broad range of problems in economics. 

• Research was initiated in 1951 with support of the Rand 
Corporation on the “Theory of Resources Allocation,”
with applications to transportation, location and 
population dispersal problems. Rand’s main interest was 
railway capacity analysis, perhaps motivated by a desire 
to estimate the capacity of the USSR railway system.  

• The research team worked on the application of “activity 
analysis” to transportation and location problems. A study 
of efficiency in road networks led to the discovery of 
“traffic network equilibrium.”
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Beckmann’s Pioneering Achievement
• Represented a road network with general link cost 

functions and node conservation of flow constraints; 
• Proposed a complementarity relationship for shortest 

route choices from an origin to a destination: if a route 
flow is positive, then its route cost must be a minimum, 
and if a route cost is not a minimum, its route flow must 
be zero (cf. Wardrop, 1952);

• Defined the general properties of a model of origin-
destination flow (demand) as a function of endogenously 
determined user-equilibrium route costs;

• Formulated a concave optimization problem whose 
solution incorporated both demand and route choice;

• Analyzed the properties of this formulation and the 
related formulation for efficiency on road networks.
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Significance of the Results
• Beckmann was evidently the first economist to use the 

Kuhn- Tucker (1951) conditions as the basis for 
formulating an entirely new problem in economics;

• His formulation had major practical consequences: 
urban travel forecasting for road planning around the world;
road pricing policy and design of congestion toll systems;

• Beckmann may also have been the first to use the 
Kuhn-Tucker conditions to formulate a large-scale 
optimization problem in any field of engineering, 
making a seminal contribution to the emerging field of 
operations research as well as engineering in general.
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Objectives of This Talk
• Offer conjectures and insights into how Beckmann 

achieved his result, described in Chapter 3 and 4, 
Studies in the Economics of Transportation; 

• First, I review the Kuhn-Tucker (K-T) conditions;
• Then, I show how Beckmann may have applied them    

to formulate his model.
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The Kuhn-Tucker Conditions
Find 0x that maximizes ( )xg  constrained by: ( ) mhxfh ,...,1, =  and 0≥x .  
For 0x to be a solution to the maximum problem, it is necessary that 0x and  
some 0u satisfy conditions (1) and (2), and a certain constraint qualification: 
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Setting up the Optimization Problem - 1
Let ( )ij denote a directed link connecting node i to node j  

kijx ,  denotes the flow on link ( )ij terminating at node k;  

( )∑ +==
k

kjikijjiij xxxx ,,  denotes the total flow on link ( )ij   

 jiij yy =  denotes the cost of travel on link ( )ij  (nondirectional) 
The definitions of link flow and link cost pertain to two-way roads. 
 
Node conservation of flow (based on Kirchhoff’s Law): 
 
Let ( )∑ −=

j
kjikijki xxx ,,,  be the total flow from node i to node k;  

 ki
j

kji
j

kij xxx ,,, +=∑∑   

Or, flow out of node i = flow into node i + flow originating at node i  
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Setting up the Optimization Problem - 2
Choice of shortest routes (or least-cost route):  
If kiy , is the least cost from node i to node k, then kjijki yyy ,, +≤ , for all j. 
For every ( )ki,  there is a unique value kiy , such that ijkjki yyy ≤− ,, , with 
the equality holding for some j. Assuming travelers use shortest routes: 
     if ijkjkikij yyyx =−> ,,, then ,0 , and if ,0 then , ,,, =<− kijijkjki xyyy   
Therefore, ( ) 0,,, =−− ijkjkikij yyyx  for all nodes j, and all node pairs i,k.  
For each pair ( )ki, , then, all used routes have minimal and equal costs.  
 
Capacity or Link Performance Function  
Let ( )ijijij xhy =  be the “capacity function,” which is non-decreasing;  
where ijy is the travel cost on link ( )ij experienced by each traveler. 
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Fixed Demand Model Formulation
Consider the following cost minimization problem: 
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     where ( ) ( )∑ +≡
k

kjikijij ijxxx , allfor  ,,,   

     and kif ,  is the fixed flow from node i to node k 
Define an auxiliary function, now known as the Lagrangean function: 
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If ( ) ( )
,
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The standard K-T interpretation follows: 
 
     1) if ,0, >kijx then ( ) ( )ijijijijijkjki xhxxh ′⋅+=− ,, λλ , for all ( )ki,  

 
     2) if ,0, =kijx then ( ) ( )ijijijijijkjki xhxxh ′⋅+≤− ,, λλ , for all ( )ki,  
 
where ( )kjki ,, λλ −  as the “cost” of travel from node i to node j. 
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This result shows an additional charge, or “efficiency toll,” must be placed  
on link ( )ij  for the total cost of travel to minimized. Suppose we want the 
link flows and costs without such tolls? This question must have confronted  
Beckmann. To remove the unwanted term, he altered the objective function: 
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Defining the objective function as the integral over the link flows 
 yields the standard user-equilibrium result: 
 
     1) if ,0, >kijx then ( )ijijkjki xh=− ,, λλ , for all ( )ki,  
 
     2) if ,0, =kijx then ( )ijijkjki xh≤− ,, λλ , for all ( )ki,  



21

Variable Demand Formulation
Beckmann also assumed variable origin-destination flow (demand)  
depends upon shortest route costs: ( )kikiki yfx ,,, = : flow from i to k is a 
function of the shortest route cost kiy ,  and independent of all other flows. 
For his formulation, Beckmann needed the inverse demand function,  
which he stated as: ( )kikiki xgy ,,, = , assumed to be strictly decreasing 
 
To expand the fixed demand formulation to include variable demand, we 
add the integral of the inverse demand function to the objective function,  
and change the node conservation of flows constraints to variable demand.  
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The corresponding K-T optimality conditions are: 
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From these K-T conditions, we have the following interpretations: 
 
  1) if ,0, >kix  then ( ) kikikiki yxg ,,,, ==λ , for all ( )ki, ,  
  2) if ,0, =kix  then ( ) kikikiki yxg ,,,, =≥λ , for all ( )ki, ;  
  3) if ,0, >kijx  then ( ) ( ) ( )ijijkjkjkiki xhxgxg =− ,,,, , for all ( )kij,  
  4) if ,0, =kijx  then ( ) ( ) ( )ijijkjkjkiki xhxgxg ≤− ,,,, , for all ( )kij,  
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Conclusions
• The Kuhn-Tucker conditions were the basis for 

Beckmann’s formulation, including the representation of 
the user-equilibrium route choice conditions. The only 
prior application of the K-T conditions in economics 
found so far was by Dorfman (1951), who proved a 
known result in a new way.

• One key to Beckmann’s formulation was representing 
the shortest route assumption in the optimality conditions 
as a complementarity relationship. Then, he formulated 
an equivalent, or artificial, objective function that 
generated the desired results.
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• Later formulations of the problem changed to the     
link-route representation of conservation of flow 
(Patriksson, 1994). Although this representation may   
be more intuitive, some insights may be lost.

• Similar formations involving the integral of a function 
are found in economics, and perhaps in theoretical 
mechanics, as Beckmann hinted. Consumers’ surplus, 
discussed in Chapter 4, could be viewed in the same 
way, although a plausible interpretation is available. 

• In such cases an interpretation of the objective function 
may not be possible, or it may need to be interpreted in  
a more complex framework. An example is the 
“representative traveler” interpretation proposed by 
Oppenheim (1995). 




